


2

[image: ]Biomedical Teaching Organisation 
BIOMEDICAL SCIENCES 2 2016/17
__________________________


“Inferring from data” 
WORKSHOP HANDBOOK











Name: ______________________________________







Key contact:
Dr Crispin Jordan 

































If you require this document or any of the internal University Of Edinburgh online resources mentioned in this document in an alternative format please contact bms2@ed.ac.uk. 




Contents
1.	WORKSHOP DESCRIPTION	4
2.	STAGE 1: Formulating a hypothesis	5
3.	STAGE 2:  Designing an experiment	6
4.	STAGE 3:  Collect data for your experiment	9
5.	STAGE 4:  Analyzing your data:	12
6.	STAGE 6:  Interpreting your results:	20
7.	SUMMARY OF COMMANDS	21







1. [bookmark: _Toc464049791]WORKSHOP DESCRIPTION

1.1 Workshop aims:

In this workshop session you will practice the scientific method. You will learn how to formulate a hypothesis and design an experiment (that compares female and male forearm lengths). You will learn how to collect, describe and analyze the data.

1.2 Workshop Learning outcomes:

By the end of the workshop, you should be able to
Understand the difference between a Null and Alternative hypothesis.
Differentiate between a ‘sample’ and a ‘population’.
Learn to collect data consistently.
Appreciate the concept of ‘statistical significance’.
Explain how statistics uses a ‘Null Distribution’ to determine whether a result is ‘significant’.
Conduct a Randomization Test to test whether two means differ significantly from one another.

1.3 Workshop structure:

In this workshop, you will address the question, 
“Does the average forearm length differ between females and males?” 

In doing so, you will work though many of the steps of the scientific process:  you will design an ‘experiment’, collect data, and describe and statistically analyze the data.   Hence, this workshop is organized according to stages of the Scientific Method.

For each stage of the scientific method, we’ll discuss underlying ideas associated with this stage.  These fundamental concepts are presented in Boxes, whereas the ‘instructions’ are not.  These concepts are introduced as they arise in your work; so this document is not just a simple recipe for conducting the experiment.  We strongly advise you to read and gain an understanding of the concepts in the boxes, as putting these concepts into practice is the main point of this practical.

This document synthesises much content, and we do not expect you to digest and understand it all fully in this practical.  We will re-visit this material in the first BMS 2 statistics lecture in the second semester.  Hence, this document partly serves as a text for you to later refer back to when studying the associated subject matter.  This partly explains why this document is long.



2. [bookmark: _Toc464049792]STAGE 1: Formulating a hypothesis

Box 1:  Null versus Alternative hypotheses

Before beginning any scientific study, it is crucial to develop a hypothesis, for two reasons.  The first is practical:  if you do not have a hypothesis in mind, you’ll likely not collect data in an effective manner and you will waste your time.  The second is more fundamental:  all statistical tests are based on testing a hypothesis.  So, to meaningfully conduct a statistically test, you need a hypothesis.

Developing a hypothesis is often the most difficult stage of the scientific process.  It is easy to develop an unhelpful hypothesis, but studies that truly advance science have great ideas/hypotheses.

A Hypothesis is an explanation for your data; two types of hypothesis exist.

A Null hypothesis is one where we propose that whatever factor we wish to study has no effect on our data.  For example, we might propose the Null Hypothesis that the day of the week does not affect the probability that a baby is born. In classical statistical approaches, which you’ll learn in BMS2, we use data to determine whether we’re justified in rejecting the Null hypothesis.  (The meaning of this idea will become clearer later in the practical.)

An Alternative hypothesis is the opposite of a Null hypothesis:  it holds that the factor you’re studying (gender, in our case) does affect your data (forearm length, in our case).  If you conclude that your Null hypothesis is wrong, you accept your Alternate hypothesis.  Note that, in practice, scientists usually formulate the Alternative hypothesis in their research (e.g., babies are less likely to be born on weekends than on weekdays:  the day of the week affects the probability that a baby is born); however, it is the Null hypothesis that classical statistical approaches test, which is why we mentioned the Null hypothesis first.  

2.1) Hypothesis.  Following the discussion in Box 1, what would the appropriate Null hypothesis be when comparing mean forearm lengths between females and males?

Null hypothesis:

Average forearm length does not differ between females and males.

Alternative Hypothesis:
Average forearm length differs between females and males.  NOTE that we have not implied a direction of difference (i.e., f > m, or m > f); such directional hypotheses are for “one-tailed tests”


3. [bookmark: _Toc464049793]STAGE 2:  Designing an experiment  


Box 2: Who, exactly, do you wish to learn about?  Populations versus Samples

Whether or not you require statistics to answer a question depends on what you wish to learn.  For example, if you wished to know whether the average forearm length of females in this practical session differed from that of males in this session, this is a trivial question to answer definitively:  you would simply measure everyone’s forearm, calculate the average for females and males, and compare them.

However, in most cases, we are not interested in studying such small groups.  Typically, we are interested in the qualities of, say, an entire species (like humans).  In this case, it is impractical to study all humans; instead, we must study a sub-set of humans, and we refer to this subset as the ‘Sample’.  We then use the sample to make inferences about the larger group we’re interested in, which is the ‘Population’.  We use statistics to make those inferences about the larger population from the sample.

To illustrate, consider the trivial example above, where we only wished to know whether females in this practical session had different forearm lengths, on average, to males.  In this case, the individuals in the practical session comprised the entire population.  On the other hand, your practical session could be viewed as a sample if we wished to use it to study some larger population (see Box 3 for more thoughts on this).

3.1) Sample.  The people in this practical (you!) will serve as the sample to test our hypothesis.  What population do you wish to make inferences about?

Answer:


Possible answers:  U of Ed, Ed, Scotland, all humans….  Whether this practical is a representative sample of such populations depends in part on how we obtained our sample, which is addressed in the next question.











NOTE:  30 minutes budgeted to cover Boxes 1-2

4. [bookmark: _Toc464049794]STAGE 3:  Collect data for your experiment

4.1)  Collect Data.  We now have a hypothesis, and a sample of individuals:  we need data.  When collecting data, it is extremely important to collect it consistently:  a lack of consistency will add more variability (‘variance’; to be discussed in lecture) to your dataset, and make your statistical test less powerful.  Or worse:  a lack of consistency could add bias, and lead to the wrong conclusion.  For example, if female forearms were measured differently from male forearms, this bias could easily lead to an incorrect conclusion.

a) In your groups (the people in your row), decide how you think forearm length should be measured. Then, one member of each group will explain your method to the rest of the class.  Finally, you’ll decide as a class which method to adopt.  10 minutes

b) Measure your forearm in millimeters (mm) using the method agreed upon by the class, and record it on a sheet of paper for your group along with the gender with which you associate yourself ().

Forearm length (mm):


c) One person from your row will enter your row’s data into the computer at the front of the room.  There will be two columns: Length (in millimeters), and the Gender of the person for which the measurement was taken. 10 minutes

4.2)  Import the data.  When all of the data have been entered, a demonstrator will make a csv version of the file available to RStudio.  To access the data, first log into RStudio here:  5 minutes

https://rstudio.mvm.ed.ac.uk/

Now, do the following to upload the data:
 * Select "Import Dataset" from the "Environment" pane.
 * Select "From Local File..."
 * For "File name:" enter "/opt/rstudio/shared"
 * Then select the required dataset. Under ‘Name’, you can specify the name of your new dataframe. Here, we will call the dataframe ‘data’ (but this is arbitrary).


4.3)  Describe the data.  Because the data will not be sorted with respect to gender, we need to organize the data before we can describe it.  We will use the function, order(), to sort our data by gender, and we’ll place the sorted data into a new dataframe.  For example, if you called your unsorted dataframe, ‘data’, we can create a new, sorted dataframe, ‘data.ordered’, with the following command:

data.ordered <- data[order(data$Gender),]

How does this command work?  Note that the order() function is placed where the X is, here:  data[X,].  Recall that the square brackets of a dataframe allow us to specify rows and columns within it; the fact that the order() function lies to the left of the comma in data[,] means that we’re ordering (sorting) the rows of your dataframe.  Within order(), we specified ‘data$Gender’: this indicates that we wish to order the data by Gender.  (Note it is also possible to sort by more than one column; see R’s Help for information.)  Finally, we created a new object, data.ordered, to hold the newly sorted dataframe.

a) Find the mean forearm lengths of females and males in the class.  Scroll through the sorted dataframe to find which rows contain data from females versus males.  Now, calculate the mean forearm length of females.  You can do this by using the function mean() for the appropriate rows and column of your sorted dataset.  For example, if female forearm lengths were in the second column on rows 1 to 4, you could use the following to determine the mean of those 4 values:

mean(data.ordered[1:4,2)] 
[NOTE; the above command an example; what command is appropriate for your real data?]

Calculated mean female forearm length:    


Now, use the same procedure to calculate the mean forearm length for males in this class.

Calculated mean male forearm length:                         


And, to be complete, calculate the mean forearm length for females and males, together:

Overall mean forearm length:
In this case, use:  mean(data.ordered[,2)]

b) Calculate the difference between the mean female and male forearm, lengths:  mean female length – mean male length.  You will use this value in a statistical test, below.


Calculated mean female length – mean male length: 

  
Before proceeding, confirm with your demonstrator that your calculations are correct.  It is critical to know how to do this calculation correctly to perform later stages of this practical.
MAKE SURE EVERYONE IS ON TRACK!

c) Now, plot two histograms, one of female forearm lengths and one for males, using the techniques you learned in the self-study Session 4.  
STUDENTS WERE SHOWN 2 APPROACHES:
1) hist(data.ordered[RANGE OF FEMALE OR MALE DATA,2])
2) femaleArms <- data.ordered[RANGE OF FEMALE DATA,2]
hist(femaleArms)
…AND LIKEWISE FOR MALE DATA
a. Based on these histograms, do you think that female and male forearm lengths differ?

See histograms

b. Do the means that you calculated for each gender seem sensible given your plots?

See histograms and calculations


c. What is the shape of each distribution?  For example, are they symmetrical?  Describe them in words and sketch them here:




Describe




d. Are there any forearm lengths that seem suspicious?  For example, a forearm length of 1 meter?  You should always check whether unusual data points are real, or are the result of typos when entering the data.

Describe suspicious data, if any:


Describe suspicious points; what might cause them?

30 minutes to describe the data
The demonstrator will discuss how to interpret a histogram.
BE CERATIN TO TALK TO AS MANY STUDENTS AS POSSIBLE

5. [bookmark: _Toc464049795]STAGE 4:  Analyzing your data:

Now that we have calculated the means for each gender and visualized the data, we wish to test whether it is likely that average forearm lengths differ between females and males for our defined population.  To do this, we need some more concepts.

Box 3:  How can we use our sample to test whether mean forearm length of females and males differs in our population?  Randomization test

We are interested in whether there is a systematic difference in forearm lengths between males and females. However, it is possible for our samples to suggest that females and males differ in forearm length, just due to random chance  Here’s a simple example.  


Consider a population with the following forearm lengths of females and males:

Female forearms:  	434   400   430   460   473   464   417   460   422   390
Male forearms:	413   422   435   416   449   410   431   461   466   447

Note that, on average, there is no difference between the female and male forearm lengths in this imaginary population (mean = 435).  However, if you randomly sampled a few (say, 3) of each females and males from this population, would the female and male averages be very similar?  (Try it!)  If the average forearm lengths are basically equal in our pretend population, why would the averages of your samples not be almost identical, as well?

Answer:


Differences arise by chance due to sampling error (error in a statistical analysis arising from the unrepresentativeness of the sample taken.)


So here’s the important question:  How can we use our samples to determine whether it is likely that female and male forearm lengths are actually different in the larger population (i.e., that (mean female length – mean male length) ≠ 0 in the population)?  Or, another way of asking this is to say, “Do females and males actually come from different “populations” that have different mean forearm lengths?”  

We can address this question by recognizing that, if there really is no difference between females and males in the population, then adding the label of ‘female’ or ‘male’ to a datapoint is meaningless (because there is no difference, on average, between females and males).  This means that we can do the following to test whether mean forearm length of females differs from that of males:

1.  Randomize (i.e., randomly shuffle) our measurements with respect to whether they belong to a female versus male;

2.   Calculate the difference between female and male average forearm lengths;

3.   Compare the difference between average female and male forearm length (i.e., mean female length – mean male length) from the randomized data to that from the original (non-randomized) data (i.e., the mean female length – mean male length for the non-randomized data):  if they are similar, then we might conclude that female and male average forearm lengths do not differ in the true population.  On the other hand, if they are quite different, then we might conclude that forearm lengths likely differ between the sexes in the true population;

Now, STOP!!!  

Before continuing, absorb what was just outlined in 1-3 of this Box.  Ask yourselves, “How can we use this to determine whether it is likely that female and male forearm lengths are actually different in the larger population?”  Keep in mind (hint!) that we have computers at our disposal, so we could perform steps 1-3 many times.  (If we did do this, how could we interpret the results?)  Think about this on your own for a minute or two, and then discuss with your group.

…When you’ve finished discussing (5 minutes), continue reading (cont’d next page)!

Continue when you have finished thinking about 1-3 in this Box…












4.   So how do we determine whether the randomized and non-randomized differences are ‘quite different’?  Here’s how:  we do steps 1 and 2 many times to create a distribution of differences in mean forearm lengths from randomized data.  This distribution tells us what to expect as a ‘typical’ difference between females and males when there actually is no difference between female and male mean forearm lengths in the true population.  We can then compare our result from non-randomized data to this distribution to see how typical (or atypical) our difference is.

We will now use this approach with our data.  This is called a ‘randomization test’.

20 minutes to deal with Box 3 
We will now follow the arguments in Box 5 to implement a ‘randomization test’ on our data.  Our approach will divvy up the work of randomizing among all the students in the practical, and we’ll then work with the results of our shared effort.

5.1 Randomize the data with respect to gender.  We can do this with the following command, placing the randomized data in a new column;  

data.ordered$rand1 <- sample(data.ordered[,"Forearm"], nrow(data. ordered), replace = FALSE)

How does this command work?  
a) We’re using the function, sample(), which randomly samples data from a column and places it in a new object.  The first specification that we made within the sample() function indicates which data will be sampled from; we told R to sample from data.ordered[,"Forearm"]:  the sorted dataframe, using the column named Forearm (note that Forearm is on the right of the comma within the [ ]’s).  We could have instead used the column number associated with the column, “Forearm” (e.g., data.ordered[,2], if “Forearm” is in the second column), but it is wiser to use the column name to avoid accidentally naming the wrong column.

b) The second entry within sample() tells the function how many numbers to draw.  We want to draw as many numbers as there are rows in our dataframe (i.e., we want to shuffle all of the data); we coded this explicitly by using the function nrow(), which counts and indicates the number of rows in a dataframe.

c) The third command within sample(), replace = FALSE, tells sample() that, once a number has been randomly selected, it will not be available to select again.  For example, if data.ordered[,"Forearm"] had 45 numbers to randomly choose from at the start, there would only be 44 numbers to choose from after the first number was randomly selected.  After the next number was selected, only 43 would remain, and so on.  This method of random sampling is called “sampling without replacement”.  In contrast, if we had said “replace = TRUE”, sample() would pick from a pool of all 45 samples every time.

d) The output of sample() is a vector of randomly selected numbers, which we have placed  into a new column of data.ordered, called rand1 (short for “random 1”; but you can call your column something else if you wish).  Overall, these commands have the effect of randomly shuffling the numbers in data.ordered[,"Forearm"], into a new column of data.ordered, called rand1.

When you perform this command, be certain to use the ordered dataframe.  

5.2 Calculate the mean forearm length of females for this randomized data.  Use the same approach as used above, where you first check which rows contain data from females.  For example, if female data lie in columns 1 to 17, then the randomized data for females lie here:

data.ordered[1:17,"rand1"]

Again, we’ve named the column we wish to analyze, as this is the best way to ensure that we use the correct column.

Hence, we can find the mean of these data with:

mean(data.ordered[1:17,"rand1"])

5.3 Now calculate the mean forearm length of the randomized data for males.

5.4  Calculate the difference between these means for randomized data, by subtracting the mean for one gender from the other (e.g., Mean female randomized data - Mean male randomized data).

We don’t mind which mean is subtracted from which, because we did not hypothesize whether average female forearms are larger (or smaller) than males; we only asked whether they were different from each other (in either direction). (See Box 6 for more on this topic.)   As a result, we can use the absolute value of the difference between means for our analyses because the absolute value only reflects the magnitude of the difference.

5.4 Record this absolute value of the difference between the mean female and male length for randomized data.  In other words, if the difference you calculated in (3), directly above, was -5.4, then just record 5.4 (i.e., drop the minus sign).  If the difference was 3.6, then record 3.6 (the difference was already positive). If the reasoning for using the absolute value is not clear, ask a demonstrator.

Absolute value of the difference between the first pair of means:



5.5 Repeat steps 1-5 four more times.  Each time, make a new column of randomized data (e.g. ‘rand2’, ‘rand3’…), calculate the difference between the female and male data, and record the difference.

Absolute value of the difference between the second pair of means:


Absolute value of the difference between the third pair of means:


Absolute value of the difference between the fourth pair of means:


Absolute value of the difference between the fifth pair of means:


5.6 You should now have 5 differences between the female and male forearms lengths for randomized data. Enter these values into the spreadsheet on the computer being run by the lab demonstrator.  Please include the last 4 digits of your student ID in the appropriate column (think:  why might student ID information be useful?)

5.7 When all of the class data has been entered, a demonstrator will make the data available to you.  Import these data, as you did with the original dataset.  If there are 45 students in the class, we should have 45*5 = 225 differences between mean female and male forearm length, based on randomized data.  

5.8 Plot the differences in a histogram.  Draw it here:
30 minutes to randomize the data, eneter the data, import the data and make the plot
If the new dataframe is called “diff” and the differences are in a column called, “randDiff”:

hist(diff[,”randDiff”])









Box 4:  What does this histogram represent?

Think about what this histogram represents.  Recall how we made this histogram:  we made it by randomly assigning forearm lengths to females and males that were drawn from our original data.  Then, because we’re interested in whether their means differ, we calculated the difference between the female and male means for these randomized data.  As a result, this plot shows the distribution of differences between mean female and male forearm lengths that can arise due to chance, when sampling from a population with no difference between females and males, on average.  (We can say that there is no difference because we assigned the measurements randomly with respect to gender).  This is what is referred to as a Null Distribution:  more formally, the Null distribution is the probability distribution of a test statistic when the Null hypothesis is true; in our case, our test statistic is the difference between the mean forearm lengths of females and males (think:  what was our Null hypothesis, and how does it relate the Null distribution?).

How does the Null distribution help us determine whether average female and male forearm lengths likely differ in the population?  We can compare our measure of this difference from our sample against the null distribution, and ask where our observed difference lies within this distribution.  Recall that the Null distribution tells us what kind of difference we might expect to find between mean female and male forearm lengths just due to chance, when the Null hypothesis is true (i.e., female and male mean forearm do not differ in the population).  Because we used the absolute value of the random differences, this Null distribution should look, roughly, like a tear-drop, with the highest region on the left, and a long tail (where the height of the distribution shrinks) towards the right.  The highest region corresponds to female-male differences (on the x-axis) that occur most commonly due to chance, whereas the lower tail indicates female-male differences that occur more rarely by chance.  Hence, if you find the location of your observed difference between female and male average forearm lengths on the x-axis, and find that it lies in the tall region of the distribution, corresponding to the values that are most frequently observed, then this suggests that our observed difference is typical of results that could arise by chance when sampling from a population with no average difference between female and male forearm lengths (i.e., many female-male differences of this size occur by chance).  On the other hand, if you find that the location of our observed difference on the x-axis is in the shorter part of the distribution, corresponding to values that are rarely observed by chance (i.e., in distribution’s tail), then it is less likely that our observed difference between females and male arose by chance.  In other words, this latter case would suggest the difference that we observed between females and males only occurs rarely by chance when the Null hypothesis is true.

5.9 What are the most common values in this histogram?





5.10 Compare your original, observed difference between females and males to the null distribution visually.  In other words, find where our observed difference lies in the Null distribution

Does the observed difference lie in one of the ends, or more towards the middle of the Null distribution?  


Do you think this means that our observed difference is ‘typical’ of random differences, or not?






5.11 We’ll now compare our observed difference to the Null Distribution in a more precise manner.  To do this, we will sort all the values of differences, and we can then read off, where our value lies in relation to these. We can then ask what is the proportion of values that is above or below our observed value.

Sort the distribution of differences between female and male means based on randomized data, and store the sorted data into a new object.  For example, if you called the dataframe with these differences, ‘diff’, and if the column that holds the data is called ‘random’, you can sort the data like this: 

sorted.diff <- sort(diff[,"random"])

As you might guess, the function, sort(), sorts the data vector in ascending order (this is the default option). Note, that we used order() for ordering a dataframe, and sort() for ordering a single column in a dataframe (i.e. a vector).

Now, look at the sorted data.  For example, if the sorted data are in an object called, sorted.diff, simply type

sorted.diff

Where in this distribution does your observed difference between female and male forearm length means lie?  Specifically, how may data points lie between the position of your observed difference and the end of the distribution with the highest numbers (i.e., the right-hand end)?  Count this number of data points.  For example, if your observed difference was 5.2 and the right end of the distribution from the randomizations looked like this:

,,,	0.8	1.2	1.6	2.5	3.1	4.2	5.5	5.6

…then two data points would lie between your observed difference and the end of the distribution.

Record the number of data points that lie between the observed difference and the end of the Null distribution: 


Now, determine how many data points are in the dataset of differences between randomized female and male forearm length means.  Recall that the function length() determines the number of observations in an vector.
EXAMPLE:  length(sorted.diff)
Record the number of data points in the dataset of differences:


Now, we can ask, “what fraction of the Null Distribution is more extreme than my observed value?”.  For example, if, as illustrated above, we had 2 observations that lay between our observed difference and the end of the distribution, and if there were 225 data points in the Null Distribution, then the proportion of the Null distribution that lies beyond our observed difference equals 2/225 = 0.00889.  This means that only about 0.9% of the Null distribution lies beyond our observed value.

Calculate the proportion of the Null distribution that lies beyond your observed difference.

Record this proportion:


Box 5:  P-value

The proportion of the Null distribution that lies beyond your observed difference gives the probability of observing the data (or data with an even more extreme difference) due to random chance. This is called a p-value.  How does the p-value help us?  

By convention, we say that, if less than 5% of the Null distribution is more extreme than an observed test statistic (i.e., p < 0.05), we conclude that our observed difference was unlikely to have arisen by chance if the Null hypothesis was true.  In this case, we reject the Null hypothesis and we accept the Alternate hypothesis.  (Think:  What were our Null and Alternative hypotheses?)  Alternatively, if more than 5% of the Null Distribution is more extreme than our observed result (i.e., p > 0.05), then we accept the Null hypothesis because we lack sufficient evidence to reject it.

Hence, when comparing the observed difference to the Null distribution in this practical, we wish to know whether less than 5% of the Null distribution lies beyond our observed difference in the right-hand tail (i.e., p < 0.05).  

In today’s case we only looked at the proportion of the Null distribution that lay to the right of our observed female-male difference (i.e., we did not consider the proportion to the left).  Why did we do this?  We did this because, if there is a difference between average female and male forearms, we expect the difference calculated to be one of the bigger numbers in the distribution (which lie on the right).  In other words, we’re formally testing whether our observed difference is greater than 95% of the differences that arose by chance, as found in the Null Distribution.  Or, in other words, we’re testing whether fewer than 5% of the differences that arose by chance are larger than our observed difference. 

NOTE: depending on the statistical test that you use in the future, the p-value that you use will derive from either one end or from both ends of the distribution that your test uses.  In other words, not all statistical tests use p-values from only one end of the Null distribution, as we used today.

To summarize, the proportion of the Null distribution that lies beyond our observed test statistic is called the p-value.  In other words, the p-value represents the probability (given that all assumptions of a test are met) of observing the data or getting a more extreme difference than the one we observed.  If this probability is smaller than our specified threshold (here, 0.05), then we say that it is unlikely that our observed difference arose by chance:  we reject the Null Hypothesis, and accept the Alternate Hypothesis.  If the p-value is larger than 0.05, then we do not reject the Null hypothesis, and conclude that there is insufficient evidence to suggest that female and male forearms are different in length, on average, in the population.

30 minutes to explain Box 4, have students look at their distributions, sort their data, calculate a p-value, and explain Box 5
6. [bookmark: _Toc464049796]STAGE 6:  Interpreting your results:

What do you conclude about your data?  Is there evidence to suggest that female and male average forearm lengths differ?

Answer:






NOTE:  Even if we conclude that female and male forearm lengths differ, on average, there is always a chance that our conclusion is wrong.  In particular, we must keep in mind that there is always a chance for our results to arise by chance, even if the chance is small.  This is not bad – this is simply a part of the scientific process.  To be more certain in our conclusions, we must repeat the experiment, or find other supporting evidence in other studies.  If this supporting evidence arises, then we gain confidence that we have the correct answer.  We must be cautious when interpreting the results from a single study.
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